Guggenheim Cooling Channel Simulations

Pavel Snopok

April 6, 2009

- Introduction
- 2 Multilayer scheme
- Magnetic field components
- 4 Performance characteristics
- Open cavity lattice
- 6 Summary

• RFOFO ring

- Advantages:
 - Fast cooling.
 - Compact design.
 - RF reuse.

RFOFO ring

Advantages:

- Fast cooling.
- Compact design.
- RF reuse.
- Challenges:
 - Absorber overheating.
 - Injection/extraction.
 - Continuous operation.

RFOFO ring

RFOFO helix

Table: RFOFO and Guggenheim parameters

	REOFO	Guggenheim
Circumference, [m]	33.00	33.00
RF frequency, [MHz]	201.25	201.25
RF gradient, [MV/m]	12.835	12.621
Maximum axial field, [T]	2.77	2.80
Pitch, [m]	0.00	3.00
Pitch angle, [deg]	0.00	5.22
Radius, [mm]	5252.113	5230.365
Coil tilt (wrt orbit), [deg]	3.04	3.04
Average momentum, [MeV/c]	220	220
Reference momentum, [MeV/c]	201	201
Absorber angle, [deg]	110	110
Absorber thickness on beam axis, [cm]	27.13	27.13
		IIC PIVERSITY OF CALIFOR

• 5 layers = 165 m

- 5 layers = 165 m
- no shielding between layers

- 5 layers = 165 m
- no shielding between layers
- the magnetic field at any point of the trajectory is generated by all the coils

- 5 layers = 165 m
- no shielding between layers
- the magnetic field at any point of the trajectory is generated by all the coils
- compared to the case with shielding between layers

 Characteristic half-turn of the multilayer Guggenheim with shielding any number of layers, up to 15 studied = 495 m

- any number of layers, up to 15 studied = 495 m
- shielding between layers

- any number of layers, up to
 15 studied = 495 m
- shielding between layers
- the magnetic field at any point of the trajectory is generated only by the coils in the same turn

- any number of layers, up to
 15 studied = 495 m
- shielding between layers
- the magnetic field at any point of the trajectory is generated only by the coils in the same turn
- used for comparison to the case with no shielding

Longitudinal component

• G4Beamline

Vertical componen

• G4Beamline

Radial component

• G4Beamline

Performance characteristics compared

Four simulations are considered:

- Original RFOFO lattice
- Ideal Guggenheim (shielding between layers, single turn)
- "Realistic" Guggenheim (shielding between layers, single turn, RF cavities with windows, absorbers with windows)
- 5-layer Guggenheim (no shielding, all 5 layers contributing, all windows)

Longitudinal emittance

Transversal emittance

6D emittance

Transmission

Merit factor

$$M(s) = rac{arepsilon_{6D}(0)}{arepsilon_{6D}(s)} rac{N(s)}{N(0)}$$

		Structure			
Parameter	Turn #	RFOFO	Guggenheim	Guggenheim	Guggenheim
		ideal	ideal	realistic	5 layers
$\sigma_{\scriptscriptstyle X}$ [mm]	0	41.79	41.79	41.79	41.79
	5	25.48	27.05	28.81	30.72
	10	19.62	20.74	25.58	-
	15	18.71	19.47	26.60	-
σ_y [mm]	0	42.86	42.86	42.86	42.86
	5	24.14	27.72	30.10	38.08
	10	18.61	21.74	27.77	-
	15	18.24	20.81	26.73	-
σ_p [MeV/c]	0	27.85	27.85	27.85	27.85
	5	11.80	12.00	13.58	12.79
	10	7.98	8.40	11.55	-
	15	7.37	7.45	10.83	-
σ_t [ns]	0	0.298	0.298	0.298	0.298
	5	0.235	0.237	0.261	0.364
	10	0.171	0.166	0.201	- utri
	15	0.143	0.144	0.185	- 40°.

Table: Decrease in variance for different models VERSIDE

6D Cooling

Figure: Reduction in the 6D phase space due to cooling. Gray – initial distribution, black – after 15 turns in the realistic Guggenheim cooling channel (495 m).

rf Breakdown problem

Magnetically insulated RFOFO lattices

This is not quite the magnetically insulated lattice, since it does not have the outer reverse coils, but the fields on axis will be very similar

Magnetic Insulation

Form cavity surface to follow magnetic field lines

- All tracks return to the surface
- Energies are very low
- No dark current, No X-Rays!
- No danger of melting surfaces
- But secondary emission \rightarrow problems ?
- Grateful to SLAC for help
- This cavity is inefficient $\mathcal{E}_{surface} pprox 4 imes \mathcal{E}_{acc}$ Not acceptable

Conclusions on rf breakdown in magnets problem

- Beryllium is the ideal material
 - Would probably solve the problem even at room temperature
 - Would certainly solve it at nitrogen temperature
- Aluminum is significantly better than Copper
 - If cold, it would probably solve the problem
 - If multipacter is a problem, a thin copper layer would be ok

Advantages over Magnetic Insulation

- Pillbox cavities have better Shunt Impedance
- Pillbox cavities give more acceleration for same surface fields
- Muon transmission is better with less rapid field changes
 - Simulations of RFOFO Guggenheim 6D cooling gives unacceptable losses
 - A Neutrino Factory front end using magnetic insulation appears difficult

One cell of the open cavity lattice as simulated

Scheme

G4BL Simulation

Local bending vs uniform bend

 \bullet Straight cells + 30 deg bend

Curved cells + uniform being

Magnetic coil tilt

• No tilt + uniform field of 0.136UERSIDE

Magnetic coil tilt

• 4.9 degree tilt generating 0.136 UTRIVERSIDE

Magnetic coil tilt

• 4.9 degree tilt generating 0.136 T, magnified

Magnetic field, vertical component

Magnetic field, longitudinal component

Magnetic field, radial component

Parameters

- Average vertical field of 0.136 per cell is generated by tilting the coils
- Tilting coils requires some more space \Rightarrow shorter RF cavities \Rightarrow 7.1 MeV/c gain per cell
- 100 degree absorbers \Rightarrow 9.58 MeV/c loss per cell \Rightarrow need shorter absorbers \Rightarrow 90 degree absorbers
- Tweaking absorber positions/tilts might help

Transmission

- Magnetic coils only: 88% after 15 turns (450 m) with no decay/stochastic processes
- Magnetic coils only: 62.5% after 15 turns with decay and stochastic processes
- As soon as the RFs and absorbers are turned on, the transmission drops to 50% after just 5 turns

Summary

Current results:

- A number of issues with the lattice of the RFOFO helix, commonly known as Guggenheim addressed: transmission and magnetic field profile discrepancies between G4BL and ICOOL resolved.
- Guggenheim cooling channel studied in detail, simulated with and without shielding, with and without absorber and RF windows.
- Quantitative results: 50% transmission, 60 times 6D emittance reduction with shielded layers + RF windows + absorber windows.

Summary

Plans:

- Open cavity lattice studies.
- Magnetic field only: transmission of 88% with no decay and stochastic processes, 62.5% with decay and stochastic processes.
- RFs + absorbers: require further studies.
- Studies of the sensitivity to the RF gradient and magnetic field strength.

